84 research outputs found

    Preconception knowledge, beliefs and behaviours among people of reproductive age: a systematic review of qualitative studies.

    Get PDF
    The health of parents before pregnancy influences the short- and long-term health of their offspring. This systematic review explored the preconception knowledge, beliefs and behaviours held by women and men of childbearing age. Databases were searched from 2009 to 2022 (MEDLINE, CINAHL Full-text, PsycINFO, EMBASE). Inclusion criteria specified qualitative research papers which recruited individuals of reproductive age (16–45 years) without existing chronic illnesses. Data were quality assessed and analysed using thematic synthesis. Twelve papers met inclusion criteria. Six themes were identified (cultural context, pregnancy planning, knowledge, gender roles and responsibility, information seeking, prior health behaviours) which relate to individual, social, psychological and cultural factors. Cultural context was related to all other themes. Pregnancy planners had greater motivation to optimise their health whereas those not actively planning were focused more on becoming financially stable. Women and men's knowledge of how and why to engage in health protective behaviours was limited, with health risks and behaviour change discussed in the context of pregnancy rather than preconception. Gender roles influenced individual responsibility for preparation for pregnancy, which in turn influenced information seeking behaviours and engagement in health behaviours. Online sources of support and information were seen as desirable, regardless of pregnancy planning stage. Our findings indicate that behaviour change interventions designed to support people to optimise health before conception should address cultural, individual, social and psychological factors to facilitate behaviour change. Development of online resources may help to increase accessibility for people across different cultural contexts and stages of pregnancy planning

    Oncogene expression from extrachromosomal DNA is driven by copy number amplification and does not require spatial clustering in glioblastoma stem cells

    Get PDF
    Extrachromosomal DNA (ecDNA) are frequently observed in human cancers and are responsible for high levels of oncogene expression. In glioblastoma (GBM), ecDNA copy number correlates with poor prognosis. It is hypothesized that their copy number, size, and chromatin accessibility facilitate clustering of ecDNA and colocalization with transcriptional hubs, and that this underpins their elevated transcriptional activity. Here, we use super-resolution imaging and quantitative image analysis to evaluate GBM stem cells harbouring distinct ecDNA species (EGFR, CDK4, PDGFRA). We find no evidence that ecDNA routinely cluster with one another or closely interact with transcriptional hubs. Cells with EGFR-containing ecDNA have increased EGFR transcriptional output, but transcription per gene copy is similar in ecDNA compared to the endogenous chromosomal locus. These data suggest that it is the increased copy number of oncogene-harbouring ecDNA that primarily drives high levels of oncogene transcription, rather than specific interactions of ecDNA with each other or with high concentrations of the transcriptional machinery

    The evaluation of a healthcare passport to improve quality of care and communication for people living with dementia (EQuIP): a protocol paper for a qualitative, longitudinal study

    Get PDF
    Background\ud \ud There is an urgent need for the development of simple communication tools that convey the strengths, assets, and healthcare needs of people living with dementia. A Healthcare Passport may improve communication with range of health and social support services, enhancing quality and continuity of care, and to permit a consideration of the challenges and how these might be managed effectively and compassionately. This study aims to evaluate the acceptability and use of this type of intervention for people living with dementia and their carers.\ud \ud \ud Methods/Design\ud \ud This is a qualitative longitudinal study informed by a critical realist review. The participants will be individuals identified as having mild-moderate dementia and informal carers. The in-depth interviews will occur at three points over the course of 18 months as they use the passport. This will be supplemented by analysis of the content of the passports and information from health and social care providers on the daily practicalities of using the passport in a range of healthcare settings.\ud \ud \ud Discussion\ud \ud By using a critical realist review and a qualitative, longitudinal approach, the study allows for the assessment of a complex intervention in a manner which goes beyond evaluating the basic efficacy of the passport, but looking more deeply at how it worked, for whom, and in what context. It has the potential to develop new data on how interventions improve communication across a range of service providers, while encouraging health and social care professionals to respect and encourage the development of self-management and retention of personhood throughout the progression of life-limiting illnesses

    Reef fish hybridization: lessons learnt from butterflyfishes (genus Chaetodon)

    Get PDF
    Natural hybridization is widespread among coral reef fishes. However, the ecological promoters and evolutionary consequences of reef fish hybridization have not been thoroughly evaluated. Butterflyfishes form a high number of hybrids and represent an appropriate group to investigate hybridization in reef fishes. This study provides a rare test of terrestrially derived hybridization theory in the marine environment by examining hybridization between Chaetodon trifasciatus and C. lunulatus at Christmas Island. Overlapping spatial and dietary ecologies enable heterospecific encounters. Nonassortative mating and local rarity of both parent species appear to permit heterospecific breeding pair formation. Microsatellite loci and mtDNA confirmed the status of hybrids, which displayed the lowest genetic diversity in the sample and used a reduced suite of resources, suggesting decreased adaptability. Maternal contribution to hybridization was unidirectional, and no introgression was detected, suggesting limited, localized evolutionary consequences of hybridization

    Climate Change Impact on Neotropical Social Wasps

    Get PDF
    Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997–2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations

    Photochemically-produced SO2_2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Recent observations from the JWST Transiting Exoplanet Early Release Science Program found a spectral absorption feature at 4.05 μ\mum arising from SO2_2 in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ_J) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of \sim1100 K. The most plausible way of generating SO2_2 in such an atmosphere is through photochemical processes. Here we show that the SO2_2 distribution computed by a suite of photochemical models robustly explains the 4.05 μ\mum spectral feature identified by JWST transmission observations with NIRSpec PRISM (2.7σ\sigma) and G395H (4.5σ\sigma). SO2_2 is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H2_2S) is destroyed. The sensitivity of the SO2_2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of \sim10×\times solar. We further point out that SO2_2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur

    Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    Full text link
    Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R\sim600) transmission spectrum of an exoplanet atmosphere between 3-5 μ\mum covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2_2 (28.5σ\sigma) and H2_2O (21.5σ\sigma), and identify SO2_2 as the source of absorption at 4.1 μ\mum (4.8σ\sigma). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2_2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur
    corecore